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LElTER TO THE EDITOR 

A subadditive thermodynamic formalism for mixing repellers 

K J Falconer 
School of Mathematics, University of Bristol, University Walk, Bristol BS8 lTW, U K  

Received 27 April 1988 

Abstract. The thermodynamical description of fractals that has recently attracted much 
interest both experimentally and theoretically in the study of dynamical systems is, in some 
ways, limited, being essentially an additive theory. We present a subadditive thermo- 
dynamic formalism for which we derive a variational principle and show how it may be 
used to study the dynamics of non-conformal transformations. In particular we discuss 
an analogue of Bowen's formula for the dimension of a mixing repeller. 

The thermodynamical description of fractals has recently attracted considerable 
interest, partly because of the new concept of 'multifractals' (see TCl (1987), Bohr and 
Til  (1988), Bessis et a1 (1988) and Vaienti (1988a, b)  which include many references). 
Analogues of concepts such as entropy and pressure may be defined for fractals 
constructed in a recursive manner, leading to the existence of Gibbs measures on 
fractals. One of the most elegant results in the area is Bowen's formula which gives 
the Hausdod dimension of the repeller of a conformal transformation in terms of the 
pressure function (Bowen 1979, Ruelle 1983). However, the present thermodynamic 
formalism is essentially additive, and to enable non-conformal transformations to be 
included in the framework a subadditive theory is required. Here we establish such 
a theory, exhibit a variational principle and give a generalisation of Bowen's formula. 

Let J be a compact subset of a Riemann manifold M that is invariant under an 
expanding map f of class C'+' (i.e. the derivative o f f  has Holder exponent E > 0). 
Specifically we assume the following. 

( a )  There exist c > 0 and a > 1 such that 

I I(Lf")(u)l lk ca"Ilull (1) 

for x E J, U E T,M and n 3 1, where T, f is the tangent map to f at x (the derivative if 
M is R d ) .  

(b) J has an open neighbourhood V in M such that 

J = { x E  V : f " x ~  V for all n s 0 ) .  

( c )  f is topologically mixing on J, i.e. for every open set U properly intersecting 

We call J a mixing repeller for J: 
The most frequently encountered examples of mixing repellers are the Julia sets 

of conformal mappings (see Blanchard (1984) for a survey). If f(z) is a rational 
function of the (extended) complex plane, for example f(z) = z 2 +  c, the Julia set 
(defined to be the closure of the repelling periodic points o f f )  is, in general, a mixing 
repeller. Ruelle's (1983) description of dynamical and geometrical properties, such as 

J there is an integer n 3 0 such that f " U  2 J.  
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the Lyapunov exponents and the dimension of the repeller in thermodynamic language, 
applies in this case. This theory is dependent on the chain rule equality I ( f 0  g) ’ ( z ) l=  
I f ’ ( g (  z))llg‘( z)l which holds for conformal mappings. The plane transformation 
f ( x ,  , x 2 )  = ( x :  - Ax: + a, 2 x l x 2  + b )  is non-conformal if h # 1, but nevertheless can have 
a mixing repeller of ‘Julia type’. The standard thermodynamic formalism cannot be 
applied in this situation since the derivatives merely satisfy an inequality 
I l ( f 0  g)’(xl ,  x2)ll s I l f ’ ( g ( x , ,  x2))ll  / I g ‘ ( x , ,  x2)ll .  However, as we shall see, this submulti- 
plicativity is sufficient for a thermodynamic description to be developed. 

By standard theory (Bowen 1975, Ruelle 1978) a mixing repeller J has a Markov 
partition, i.e. there exist sets I , ,  . . . , Ik, each the closure of their interior (in J ) ,  such 
that J = U:=, I , ,  each f(I#) is a union of I, and int I ,  n int I ,  = 0 if i # j .  A sequence 
z,,, i I ,  . . . , i, is called admissible i f f (  I , , )  3 I,,+, for 0 s j s n - 1. Given any admissible 
sequence write Ilo, ,,” for the n-cylinder n,”=,,f-’(Z,). It follows from (1) that 
diam I , ,  , ,“S cy”  for some c > O ,  y <  1. Let Ce, denote the collection of admissible 
n-cylinders. For simplicity of exposition we will assume that I,  and I ,  are disjoint for 
i # j .  The modifications required in the general case are just as in the usual additive 
situation. 

A subadditive valuation on M is a sequence of functions 4,: M += R( 1 s n < 00) such 
that 

. .  

4 m + n ( x ) s  4 n ( X ) + 4 m ( f n X ) .  ( 2 )  

l(1/n)4n(x)ls M and l(l/n)4n(x)-(l/n)4n(y)l~ alx-yl. (3) 

We assume a uniform bound and Lipschitz condition 

We also assume that the {4,,} have bounded variation, i.e. there exists a constant b 
independent of n such that 

I 4 f l ( x ) - 4 f l ( y ) l s b  (4) 
whenever x, y E I! for some n-cylinder 1;. (Conventional thermodynamics uses an 
additive valuation so that 4 n ( ~ )  = 4 ( x )  + + ( f x )  +. . . + +(f“x)  for some 4. If 4 is CltE 
then (3) and (4) certainly hold.) 

Let dth’ be the class of (Borel) probability measures on J (or indeed on V) that 
are invariant under the Nth interate f N ,  and let 9 = 2N. Thus 

g ( f N X )  dv = g ( x )  dv I 
where v E $jN and g is continuous. The entropy off  with respect to v E 21 exists (see 
Ruelle 1978, Walters 1982), being defined by 

1 
h , ( f )  = lim -- C v(~j”) log v(z~”). 

n - m  n %,, 
(5) 

As always, summation is over admissible n-cylinders and 0 log 0 = 0. v E 
invariant under f 

If ~ € 2 ~  then h , ( f N )  is defined. Moreover it is easily shown that the limit (5) still 
exists and satisfies (6). Thus it makes sense to define 

is also 
and we have 

h u h ’ )  = Nh”(f). ( 6 )  

if ~€9, for any N. 
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lim - 4 , N ( ~ )  dv 
r-m rN ' I  

exists. Since for 1 s k s N 

4rN+k(X)dVs J [4rN(X)+d'k(frNX)]dY= J +rN(X)dY+ J 4k(x) dv 

it follows that 

lim- +,,(x)dv 
n-m n ' I  

exists if V E $ ~  for any N. 
In the additive situation, the pressure P ( f ,  . ) off  is given by 

1 
P ( f ,  4 ) =  lim - l o g e  exp(4(xj)+4(fxj)+. . .+$(fn- 'xj))  

n - o o n  '8. 

where xj E Zy are chosen to maximise this expression. In the subadditive situation we 
define the pressure as 

where xj E 1; are always chosen to maximise &(xj). (For convenience we write P for 
the pressure when the arguments are clear.) The existence of this limit is guaranteed 
by subadditivity. Moreover 

I 

so, letting r+  00 and using (8) and (9 ) ,  

and letting N + CO gives 
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Note that by (4) the same value of P is obtained in (9) by taking the xj to be any 
points of I ; .  In particular, choosing xj as the unique fixed point off” in I ;  it follows 
that 

For each n, by maximising subject to the constraint Xgn v(Z;) = 1, we have 

1 1 

n %, %I 

- E  v(I,”)[-log v ( ~ : ) + 4 n ( x j ) I ~ ~ l o g  exp(+,(xj)). 

For v E 3N, letting n +CO gives 

h , ( f ) +  lim - &(x)  dvG P 
,,-.m n ‘I 

(we use (4) to get the integral). On the other hand, by (3) and the Arzela-Ascoli 
theorem, there is a subsequence {( 1/ N ( i ) ) 4 N ( i ) ( x ) }  uniformly convergent on J. Given 
E > 0, choose N = N( i) such that 

for j > i. By the standard thermodynamical theory (Bowen 1975, Ruelle 1978), there 
exists an equilibrium measure v E $,,, such that 

so that 

1 
4”(x )  dv+  E >- P ( f N ,  &) 2 P. h , ( f ) +  lim - 

n+m il ‘ I  N 
Thus, in the subadditive case we have the variational principle 

In the subadditive case, ‘equilibrium measures’ for which this supremum is attained 
are unlikely to exist in general. Taking a weak limit of equilibrium measures for 
( l / N ) P ( f N ,  d N )  yields a probability measure that need not be invariant in any sense, 
presenting difficulties with the definition of entropy. Nevertheless, we can obtain 
measures that are ‘near Gibbs measures’ and that are useful in, for example, the study 
of HausdorfT dimensions of J (Falconer 1988). Given E > 0, choose N such that 

and ’ 4N dv < lim - 4” dv+.$E. 
N n ‘ I  

There is a Gibbs measure (Bowen 1975, Ruelle 1978) v E f N  which satisfies (13) and 
such that for 0 < a < b independent of r 

a < v ( I r )  exp(rP(fN, q 5 N ) - 4 N ( ~ ) - 4 N ( f N ~ ) - .  . . - 4 N ( f ( N - ’ ) r ~ ) ) <  b (16) 
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for any Nr-cylinder IT and any X E  I,?. By the ergodic theorems of Birkhoff and 
Kingman (see Walters 1982) there exists a function 7 such that 

1 
- ( ~ N ( X ) + ~ N ( ~ ~ X ) + .  . . + ~ N ( ~ ( ~ - ' ) ~ x ) - ~ N ~ ( x ) ) "  ~ ( x ) a O  (17) r 

for v almost all x, with 

1 v ( x ) d v = [  4 N ( ~ ) d v - l i m -  4 n r ( ~ ) d v < $ k .  
r+m 'I r 

Hence there is a Borel set E with v( E )  > such that ~ ( x )  S $NE on E ;  by Egoroff's 
theorem we may choose E so that convergence in (17) is uniform on E. Thus if r 2  ro 
and x E E n I: (15)-( 17) give 

v(1,"l) < 6 exp( Nr(-P+ E )  + 4Nr(x)) .  (18) 

Defining a Borel measure by v , ( A ) =  v ( A n  E ) ,  then v , ( J ) > $ ,  and interpolating (18) 
for cylinders other than Nr-cylinders gives the 'near-Gibbs' property of v, : 

v , (Z:)<b,  e x p [ n ( - P f ~ ) + 4 , ( ~ ) 1  (19) 
for all n-cylinders 1: and x E 1:. (An alternative derivation of such measures using 
net measures rather than ergodic theory is included in Falconer (1988).) In particular, 
if P> 0, then by choosing E < P, we have 

$<C v 1 ( 1 : ) ~  6,  C exp(4n(x)) (20) 
0 55 

for any collection of n-cylinders % that cciver J. 
Our principal application is closely related to the distribution of Lyapunov 

exponents of a dynamical system. If S is a contracting linear mapping on R", the 
singular values of S, 1 > a ,  3 a2 2. . .a a,  > 0 are the positive square roots of the 
eigenvalues of S*S or, equivalently, the lengths of the principal semiaxes of the 
ellipsoids S ( B ) ,  where B is the unit ball in R". The singular value function is defined 
for O < s s  n as 

+"S)  = a l a * .  . . cl,-, 

+ ' ( S )  = (a la , .  . . 

, 
where m is the integer such that m - 1 < s s m and, for convenience, as 

for s > n. Then 4"s) is strictly decreasing in s and is submultiplicative, i.e. +'(SlS2) s 
CL'(S,)+'(S,) (see Falconer 1988). Thus, with T, the tangent map of f at x, the 
valuations +",x) =log +'(( T,f")-') =log +'(( T , n - i x f ) - ' .  . . ( Tf,f)-'( T,f)-') are sub- 
additive. We may apply the subadditive thermodynamic theory to obtain the pressures 

Taking local charts of M, the cylinder 1; is contained in a parallelepiped of sides at 
most constant x ai, where ai are the singular values of (T,f")- '  and xj E 1;. For s s n, 
1; may be covered by at most constant x a ,  . . . a,-,a, I-,' balls of diameter a, where 
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m - 1 < s s m (see Falconer 1988, or Falconer and Marsh 1988). It follows that, if 
P, < 0, the Hausdod dimension of J, dim J, is at most s (as indeed is the box-counting 
dimension). 

Since P, is strictly decreasing in s, there is a unique so> 0 satisfying 

P, = 0. (23) 

In view of (20) it is tempting to hope that dim J = so. This is certainly true i f f  is 
conformal-we are in the additive situation and (23) reduces to Bowen's formula 
P ( f ;  --s log11 T,fII) = 0, which gives dim J (Bowen 1979, Ruelle 1983). However, there 
are simple examples of non-conformal mappings with dim J < so. The difficulty that 
arises is geometrical rather than dynamical: the cylinders Z: may lie close enough to 
each other for balls straddling a large number of cylinders to provide a more efficient 
cover in the definition of Hausdorfl dimension than by covering each cylinder 
individually. However, calculations of Bedford (1988) show that the box-counting 
dimension of J equals so in the important case wheref: S' x R + S' x R is an expanding 
mapping preserving the foilation ({x} x R: x E SI). More generally, one might hope 
that the generalised Bowen formula (23) gives dim J for genericf in some sense. Work 
by Falconer (1988) and Falconer and Marsh (1988) on piecewise affine transformations 
implies that dim J satisfies (23) for a very large set off when J is totally disconnected, 
in particular for a set off that is C' dense. 

By varying the subadditive valuations, for example by looking at dn(x) = 
log t$"( ( T x f n ) - ' ,  the generalised pressures clearly contain much information about 
the distribution of the Lyapunov exponents. 

Note that the subadditive formalism described could be constructed for a shift on 
an abstract sequence space. However, given the applications we have in mind, we 
have presented it for a mixing repeller. 
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